Title
Dispersion-Corrected Density Functional Theory Comparison of Hydrogen Adsorption on Boron-Nitride and Carbon Nanotubes.
Funding Source
National Science Foundation
Department
Department of Chemistry
Document Type
Article
Publication Date
10-6-2011
Abstract
One of the main challenges for the future hydrogen economy is finding a safe and efficient way to store hydrogen. Materials with large surface areas, like carbon nanotubes and their analogues boron-nitride nanotubes, are being studied as potential candidates for this purpose. We perform density functional theory (DFT) and dispersion-corrected DFT (DFT-D) calculations of the adsorption of molecular hydrogen on graphene and boron-nitride sheets and compare the results against Møller-Plesset perturbation theory (MP2 and MP2.5). Our results indicate that DFT underestimates the binding energies, while DFT-D gives a very good agreement with the higher-order theory. Within DFT-D, we show that the binding energy of molecular hydrogen to the outer walls of carbon nanotubes is more than 40% larger than that of boron-nitride nanotubes.
Recommended Citation
Krishnan, S.; Vadapoo, R..; Riley, K E.; and Velev, J. P., "Dispersion-Corrected Density Functional Theory Comparison of Hydrogen Adsorption on Boron-Nitride and Carbon Nanotubes." (2011). Faculty and Staff Publications. 99.
https://digitalcommons.xula.edu/fac_pub/99
Comments
DOI: 10.1103/PhysRevB.84.165408