Funding Source

Louisiana Cancer Research Consortium (LCRC), NIH

Grant Number

NIH RCMI G12RR026250-03, NIH 1R15CA158677-01A1 Grant (HB)

Department

Department of Biology

Document Type

Article

Publication Date

7-8-2014

Abstract

The mitochondrial Bit1 (Bcl-2 inhibitor of transcription 1) protein is a part of an apoptotic pathway that is uniquely regulated by integrin-mediated attachment. As an anoikis effector, Bit1 is released into the cytoplasm following loss of cell attachment and induces a caspase-independent form of apoptosis. Considering that anoikis resistance is a critical determinant of transformation, we hypothesized that cancer cells may circumvent the Bit1 apoptotic pathway to attain anchorageindependence and tumorigenic potential. Here, we provide the first evidence of the tumor suppressive effect of Bit1 through a mechanism involving anoikis induction in human lung adenocarcinoma derived A549 cells. Restitution of Bit1 in anoikis resistant A549 cells is sufficient to induce detachment induced-apoptosis despite defect in caspase activation and impairs their anchorage-independent growth. Conversely, stable downregulation of Bit1 in these cells significantly enhances their anoikis resistance and anchorage-independent growth. The Bit1 knockdown cells exhibit significantly enhanced tumorigenecity in vivo. It has been previously shown that the nuclear TLE1 corepressor is a putative oncogene in lung cancer, and we show here that TLE1 blocks Bit1 mediated anoikis in part by sequestering the pro-apoptotic partner of Bit1, the Amino-terminal Enhancer of Split (AES) protein, in the nucleus. Taken together, these findings suggest a tumor suppressive role of the caspase-independent anoikis effector Bit1 in lung cancer. Consistent with its role as a tumor suppressor, we have found that Bit1 is downregulated in human non-small cell lung cancer (NSCLC) tissues.

Share

COinS