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Six previously isolated, nonaflatoxigenic variants of Aspergillus parasiticus, designated sec mutants, were
characterized morphologically by electron microscopy, biochemically by biotransformation studies with an
aflatoxin precursor, and genetically by Northern (RNA) hybridization analysis of aflatoxin biosynthetic gene
transcripts. Scanning electron micrographs clearly demonstrated that compared with the parental sec1 forms,
the variant sec forms had an abundance of vegetative mycelia, orders of magnitude reduced number of
conidiophores and conidia, and abnormal metulae. Conidiospores were detected in sec cultures only at higher
magnifications (3500), in contrast to the sec1 (wild-type) strain, in which abundant conidiospores (masking
the vegetative mycelia) were observed even at lower magnifications (3300). All sec1 forms, but none of the sec
forms, showed bioconversion of sterigmatocystin to aflatoxins. Northern blots probed with pathway genes
demonstrated lack of expression of both the aflatoxin biosynthetic pathway structural (nor-1 and omtA) and
regulatory (aflR) genes in the sec forms; PCR and Southern hybridization analysis confirmed the presence of
the genes in the sec genomes. Thus, the loss of aflatoxigenic capabilities in the sec form is correlated with
alterations in the conidial morphology of the fungus, suggesting that the regulation of aflatoxin synthesis and
conidiogenesis may be interlinked.

Aflatoxins (AF) are highly carcinogenic decaketides pro-
duced by certain strains of Aspergillus flavus and A. parasiticus
(12, 27). The AF biosynthetic pathway has been well studied,
and a number of mutants that accumulate pigmented pathway
intermediates are known (3, 4, 16).
In previous work, polyketide-producing A. parasiticus was

developed as a model system to study strain degeneration in
filamentous fungi, using mycelial pigmentation as an easily
scored marker for the polyketide pathway (15). One wild-type
and five genetically marked mutants, designated sec1 for sec-
ondary metabolism positive, were subjected to a protocol of
serial transfers. Variant strains, showing no detectable second-
ary metabolite production and designated sec mutants, were
isolated after 5 to 12 transfers of nonsporulating mycelia. The
sec forms were stable and grew as well as sec1 forms in liquid
culture. However, in addition to their inability to make detect-
able levels of polyketide secondary metabolites, they exhibited
reduced sporulation and altered colony morphology on solid
media (15). Similar correlations between morphological changes
and loss of virulence or secondary metabolite production have
been commonly reported for filamentous fungi, but no satis-
factory explanation has been found for most cases of strain
degeneration. Proposed theories include chromosome instabil-
ity, heterokaryosis, cytoplasmic inheritance, and the presence
of transposable elements (14, 18).
The aim of this research was to characterize further the

morphological, biochemical, and molecular profiles of the pa-
rental sec1 A. parasiticus strains with their derivative sec forms
and to determine the reason for the loss of aflatoxigenic capa-
bility of the sec strains. In this report we present (i) scanning
electron micrographs demonstrating morphological differences
in the mycelia and conidiophores of sec1 and sec strains; (ii)

data on the inability of sec forms to bioconvert a known AF
pathway intermediate in feeding experiments; and (iii) North-
ern (RNA) blot analyses demonstrating the presence of AF
pathway and regulatory gene transcripts in the sec1 forms and
their absence in the sec forms.

MATERIALS AND METHODS

Fungal strains and culture conditions.One wild-type and five auxotrophic and
spore color mutants of A. parasiticus used as parental sec1 forms had the fol-
lowing genotypes: SU-1; wh-1 ver-1 avn-1; wh-1 nor-1 lys-6 ade-1; br-1 nor-1 lys-6
ade-1; wh-1 ver-1 lys-6 pdx-1; and br-1 pdx-1. The sec1 mutant strains were
originally derived from SU-1 (NRRL A-16,462) by UV light treatment, nitroso-
guanidine treatment, and/or genetic (parasexual cycle) recombination techniques
(2, 5) and were obtained from J. W. Bennett’s culture collection for the present
study. The geneologies of these sec1 forms and the isolation of their respective
sec derivatives have been described previously (15). All cultures were incubated
at 308C in the dark; liquid media were maintained on a gyratory shaker (New
Brunswick Scientific model G76) operating at 150 rpm.
Media and chemicals. Stock cultures were maintained on complete medium

made of potato dextrose agar (Difco) containing 0.5% yeast extract (Difco).
Synthetic growth medium was modified by substituting sucrose for glucose but
otherwise was formulated by the method of Adye and Mateles (1). The low-sugar
replacement medium (LSRM) was also formulated by the method of Adye and
Mateles (16). Fungal cultures were grown on YES medium (10) for isolation of
DNA and RNA.
Scanning electron microscopy. Five-day-old samples were used for scanning

electron microscopic observations. The following sample preparation technique
based on previous work (19, 21–23, 29) was used to provide a more complete
range of information for the fungal samples. (i) Mycelial segments (5 mm2 to 1
cm2) were cut and promptly placed in vials containing 3% glutaraldehyde in 0.05
M phosphate buffer (pH 6.8) at room temperature. Chemical fixation for 48 h
was followed by dehydration in an ethanol series ending with absolute ethanol.
The samples were critical-point dried from absolute ethanol in liquid carbon
dioxide. (ii) Fungal cultures were placed in a VirTis model 20 SRC-X freeze-
dryer and left overnight at a pressure of 30 millitorr (4 Pa). The plates were then
removed and promptly placed in a desiccator until used for sampling. (iii)
Portions of fungal cultures measuring several centimeters were cut and placed in
quadrant petri plates. In a fume hood, a vial cap containing 4% osmium tetroxide
in water was placed in an unoccupied quadrant of the plate. After being covered,
the plate was sealed with Parafilm, and vapor fixation of the sample proceeded
for 48 h. The fungal segments were placed in a desiccator. (iv) Next, segments (5
mm2 to 1 cm2) were mounted on standard 0.5-in. (1.3-cm) Cambridge scanning
electron microscopy stubs with double-stick adhesive tabs and coated with 20 to
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30 nm of 60:40 gold-palladium in a Technics Hummer II sputter coater. All
samples were viewed in a Cambridge S-250 scanning electron microscope oper-
ating at 6 to 10 kV and a magnification range of 100 to 2,500.
Biotransformation experiments. Flasks containing 100 ml of synthetic growth

medium were inoculated with approximately 107 spores of the appropriate sec1

or sec strains. The cultures were grown for 48 h at 308C with constant shaking at
150 rpm, and the resultant mycelial pellets were harvested on cheesecloth and
rinsed with LSRM. The mycelial pellets were weighed on sterile weighing paper
from which 1 g (wet weight) was added to 9.98 ml of LSRM. For biotransfor-
mation studies, 20 mg of sterigmatocystin (ST) dissolved in 20 ml of acetone was
added to the LSRM cultures, and incubation was continued for an additional
24 h at room temperature with constant shaking at 150 rpm. Controls consisted
of adding 20 ml of acetone without ST. In other controls, ST was added to the
LSRM containing no mycelia or autoclaved mycelia.
Aflatoxin and anthraquinone assays. For extraction of secondary metabolites,

15 ml of acetone was added to each LSRM flask and the mycelia were allowed
to equilibrate at room temperature overnight. The mycelial pellets were then
separated from the liquid with a clean spatula, and the filtrate was decanted off
in a separatory funnel. Methylene dichloride (10 ml) was added to each separa-
tory funnel, and the contents were inverted 15 times. The lower, methylene
dichloride-acetone layer was collected and air dried. The dried samples were
then suspended in 1 ml of methylene dichloride, and thin-layer chromatography
was carried out by spotting 10 ml of each sample and known standards on
prescored 250-mm-thick silica gel G plates (20 by 20 cm; Analtech). The plates
were developed with ether-methanol-water (96:3:1, by volume) for AF and ST
(Rf 5 0.44 for AFB1 and 0.97 for ST) and toluene-ethyl acetate-acetic acid
(50:30:4, by volume) for anthraquinones (Rf 5 0.73 for norsolorinic acid, 0.59 for
averantin, and 0.64 for versicolorin A). The plates were dried and viewed under
long-wave UV light for fluorescent metabolites.
The initial thin-layer chromatography, as described above, was conducted to

obtain a visual estimate of the appropriate amount of extract to spot for densi-
tometric readings, as recommended by the American Oil Chemists’ Society (28).
Prescored 250-mm-thick silica gel G plates were spotted, developed in appropri-
ate solvent systems, and scanned for fluorescence with a Shimadzu model CSW
9-10 recording densitometer at an excitation wavelength of 360 nm for AF, 310
nm for norsolorinic acid, and 290 nm for averantin and versicolorin A. The
quantities of these metabolites were calculated by comparison with areas under
the peaks for standards run on the same plate. Quantities of standards and
samples were also verified spectrophotometrically (Shimadzu UV-visible UV-
160 spectrophotometer) with known extinction coefficients (8).
Northern blot analyses. Total RNA was prepared by the hot-phenol procedure

(20) from mycelia grown for 48 h in YES medium. Upon quantitation, approx-
imately 20 mg of total RNA was loaded per lane of a 1.2% formaldehyde–agarose
gel, electrophoresed, and vacuum blotted to Zeta-probe (Bio-Rad) nylon mem-
branes. The blots were baked at 808C under vacuum and prehybridized for 6 h in
hybridization buffer (50% formamide, 1 mM EDTA [pH 8.0], 7% sodium do-
decyl sulfate [SDS], 0.25 M NaPO4 [pH 7], 0.25 M NaCl, 0.15 mg of salmon
sperm DNA per ml). Hybridization was carried out for 16 h with fresh hybrid-
ization buffers and the following 32P labeled probes: (i) nor-1 (a PCR-generated
488-bp fragment of the open reading frame, 647 bp after the translational start)
(26), (ii) omtA (a full-length cDNA clone) (31), and (iii) aflR (a 1,300-bp EcoRI
fragment from the C-terminal end of the full-length cDNA clone, not including
the DNA encoding the Zn-finger region) (6, 7).
The blots were washed twice at 648C for 5 min with 1 mM EDTA–40 mM

NaPO4 (pH 7)–5% SDS, and then once for 5 min with 1 mM EDTA–40 mM
NaPO4 (pH 7)–1% SDS. Exposure times with Kodak XRP films were 12 to 20 h
at 2808C.
PCR AF biosynthetic genes. PCR was used to amplify genomic DNA regions

corresponding to the aflR (6), omtA (31), and nor-1 (26) genes from sec1 and sec
A. parasiticus strains. Approximately 250 ng of fungal total genomic DNA was
amplified with the following oligonucleotide primer pairs (100 pmol each): aflR
(59-CCGATTTCTTGGCTGTCT-39 and 59-TCCTCATCCACACAATCC-39),
omtA (59-GCAAGGACGCTACAATGTGCG-39 and 59-CTCAGCCGTTCTTC
TGACA-39), and nor-1 (59-ATGAACGGATCACTTAGCCA-39 and 59-AGTT
GAGATCCATCCGTGT-39). Reactions were performed with the GeneAmp
PCR kit reagents (Perkin-Elmer, Foster City, Calif.), using the recommended
concentrations of nucleotides, PCR buffer I, and AmpliTaq polymerase and a
final MgCl2 concentration of 3.5 mM. The thermocycler (no. PTC-100; MJ
Research, Inc., Watertown, Mass.) temperature program parameters were as
follows: 948C for 1 min, 558C for 1 min, 728C for 1.5 min for one cycle; then the
annealing temperature was increased to 588C for one cycle and finally to 608C for
35 cycles followed by a final extension at 728C for 5 min. The size of the PCR
products was confirmed by agarose gel electrophoresis with lambda HindIII and
fX174 replicative-form HaeIII DNA as size standards. The identity of the PCR
products was confirmed by Southern blot analysis with the above-mentioned
radiolabeled gene probes by the method of Yu et al. (31).

RESULTS AND DISCUSSION

Representative sec1 and sec strains of A. parasiticus wh-1
ver-1 lys-6 pdx-1 were grown on complete medium for 5 days
and subjected to scanning electron microscopic analysis, allow-
ing adequate time for them to complete the asexual reproduc-
tive cycle (Fig. 1). The sec1 form, at a magnification of 3300,
displayed heavy sporulation, with long chains of conidiospores
masking the underlying conidiophores and mycelia (Fig. 1A).
Even at a higher magnification (3500), the corresponding sec
variant displayed only an extensive, intertwined network of
largely vegetative hyphae with orders of magnitude reduction
in conidiophore formation (Fig. 1B). At a higher magnification
of 31,000, the sec1 form showed normal, healthy conidio-
phores (Fig. 1C). Typically, the sec1 conidiophore on the right
(Fig. 1C) displays a vesicle covered evenly with normal-sized
metulae, whereas the other one on the left bears chains of
healthy conidia. In sharp contrast, the sec conidiophore, at
twice the magnification (32,000) of the sec1 strain, displays an
altered morphology with reduced numbers of abnormal elon-
gated metulae, giving rise to a very small number of conidio-
spores (Fig. 1D). Specifically, the sec conidiophore showed a
smaller vesicle with eight club-shaped elongated metulae con-
taining only about 20 spores arising from it. However, no
apparent differences in the morphology or size of the individ-
ual conidiospores of sec1 and sec strains were detected.
Aspergillus conidiation has been best studied at both the

descriptive and molecular levels in the model system A. nidu-
lans and is believed to be similar in A. parasiticus (23, 25). It is
interesting that some of the developmental abnormalities ob-
served in our sec strains are similar to those described for
bristle (brlA) mutants, a regulatory locus controlling conidio-
phore development in A. nidulans (24).
The A. parasiticus sec forms were selected originally not for

their aberrant morphology but for their inability to produce
AF and/or pigmented polyketides. Therefore, we also exam-
ined the biosynthetic capacity of these strains through the use
of biofeeding experiments. ST, a late intermediate in AF bio-
synthesis, is biotransformed into AF by blocked anthraqui-
none-accumulating mutants (11, 13). The results of biofeeding
experiments with the sec1 and sec mutants are shown in Table
1. Four of the parental sec1 strains (SU-1, br-1 nor-1 lys-6
ade-1, br-1 pdx-1, and wh-1 nor-1 lys-6 ade-1) made AFB1,
whereas two blocked mutants (wh-1 ver-1 avn-1 and wh-1 ver-1
lys-6 pdx-1) accumulated, respectively, the AF precursors av-
erantin and versicolorin A. In biofeeding studies with the sec1

strains, AF production increased threefold for SU-1, sixfold for
br-1 nor-1 lys-6 ade-1, threefold for br-1 pdx-1, and sevenfold
for wh-1 nor-1 lys-1 ade-1 (Table 1). Similarly, averantin pro-
duction increased about 1.2-fold for wh-1 ver-1 avn-1 while
versicolorin A production increased 2-fold for the wh-1 ver-1
lys-6 pdx-1 mutant. In both these nonaflatoxigenic mutants,
AFB1 was produced upon addition of ST. In sharp contrast, no
measurable levels of AFB1 or any anthraquinone intermedi-
ates were detected in any of the sec strains with or without
exogenous ST in biofeeding experiments. Recovery of ST after
24 h of incubation ranged from 33.5% SU-1 sec to 61.5% wh-1
ver-1 lys-6 pdx-1 sec. The controls consisting of media without
any mycelia yielded about 67% recovery of ST (Table 1).
Similar precursor feeding experiments with A. flavus have

been conducted with four nontoxigenic strains isolated from

FIG. 1. Scanning electron micrographs of A. parasiticus wh-1 ver-1 lys-6 pdx-1. (A) sec1 (magnification, 3300); (B) sec (magnification, 3500); (C) sec1 (magnifi-
cation, 31,000); (D) sec (magnification, 32,000).
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FIG. 1—Continued.

3401



FIG. 1—Continued.
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nature and two strains isolated by repeated transfer on labo-
ratory media (17). In these studies, the nontoxigenic strains
isolated by transfer experiments biotransformed both ST and
O-methyl-ST into AF whereas the nontoxigenic strains isolated
from nature were biochemically similar to our sec strains and
did not cause biotransformation. Other studies have demon-
strated that some nontoxigenic strains of A. flavus isolated
from nature do convert precursors to AF in biofeeding studies
(9). Both the sec strains of A. parasiticus and the wild-type
nontoxigenic strains of A. flavus either lack the enzymatic ac-
tivity to bioconvert ST to AF or could have permeability prob-
lems in the uptake of ST. To investigate the former possibility,
Northern hybridization analyses were performed with total
RNA from representative sec1 and sec strains, using fragments
of nor-1, omtA, and aflR as probes (Fig. 2). Abundant mRNA
levels were detected in the sec1 control strains for all the three
probes tested. In contrast, the sec strains showed no detectable
levels of mRNA for any of the probes used. Furthermore, PCR
products of the expected size were observed for the aflR
(;500-bp), omtA (;1.6-kb), and nor-1 (;1-kb) genes in both
the sec1 and sec strains. Southern hybridization of PCR prod-
ucts with their respective gene probes confirmed their homol-
ogy to the pathway genes (data not shown). This demonstrated
that the pathway genes were present in the sec strains. There-
fore, the sec strains were unable to make any metabolic pre-
cursors of AF and were unable to carry out bioconversions
owing to lack of production of the necessary enzymatic activ-
ities.
With respect to the AF biosynthetic pathway, to date only

one regulatory gene (aflR), which positively induces the ex-
pression of the other AF pathway genes, has been cloned (6, 7,

30). No expression of aflR was detected in the sec forms,
suggesting a regulatory abnormality leading to a loss of afla-
toxigenic capability in these strains. The correlated morpho-
logical abnormalities of sec strains suggest the possibility of a
global regulatory system, some pleiotropic elements of which
may be involved both in AF production and one or more
developmental processes, such as conidiation.
In summary, none of our experimentally induced sec strains

produced detectable levels of decaketides in the AF biosyn-
thetic pathway. This appears to be due to the lack of expression

FIG. 2. Northern blot analysis of AF biosynthetic pathway transcripts from
sec1 and sec strains of A. parasiticus. Total RNA from 48-h cultures of YES-
grown fungal mycelia was electrophoresed, transferred to nylon membranes, and
hybridized with radiolabeled fragments of the nor-1, omtA, or aflR gene. RNAs
analyzed are as follows: lane A, SU-1 sec1; lane B, SU-1 sec; lane C, wh-1 ver-1
lys-6 pdx-1 sec1; lane D, wh-1 ver-1 lys-6, pdx-1 sec.

TABLE 1. Anthraquinones, ST, and AFB1 recovered from A. parasiticus sec
1 and sec strains with or without ST

Strain

Amt of metabolite recovered (mg/g of mycelia)a

Anthraquinonesb ST AFB1

2ST 1ST 2ST 1ST 2ST 1ST

SU-1
sec1 ND ND NDc Trace 3.7 11.1
sec ND ND ND 6.7 ND ND

br-1 nor-1 lys-6 ade-1
sec1 Trace (NOR) Trace (NOR) ND Trace 2.8 17
sec ND ND ND 6.9 ND ND

wh-1 ver-1 lys-6 pdx-1
sec1 0.7 (VER) 1.4 (VER) ND Trace ND 13.6
sec ND ND ND 14.2 ND ND

wh-1 ver-1 avn-1
sec1 180.8 (AVN) 209.2 (AVN) ND Trace ND 9.5
sec ND ND ND 10.7 ND ND

br-1 pdx-1
sec1 ND ND ND Trace 3.0 8.9
sec ND ND ND 10.8 ND ND

wh-1 nor-1 lys-6 ade-1
sec1 Trace (NOR) Trace (NOR) ND Trace 1.2 8.8
sec ND ND ND 9.0 ND ND

Controls (no mycelia) ND ND ND 13.3 ND ND

a Cultures with or without 20 mg of ST were incubated at 288C for 24 h in LSRM formulated as described by Adye and Mateles (1). The metabolites were extracted
and quantitated by TLC and densitometry by using the protocol outlined by Walker (28). The experiment was conducted in duplicate.
b Anthraquinones quantitated were norsolorinic acid (NOR), versicolorin A (VER), and averantin (AVN).
c ND, none detected.
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of the pathway regulatory gene aflR and the resulting inability
to bioconvert pathway intermediates to AF. In addition, all
these nonaflatoxigenic strains displayed a pleiotropic pheno-
type that involved changes in conidiophore development and
sporulation patterns. These isogenic sec1 and sec pairs remain
an interesting model system for strain degeneration (15, 18).
They may also be useful tools in providing an insight into the
correlation between secondary metabolism and morphological
development in filamentous fungi.
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