5-31-2019

Organic Chemistry II Drill (CHEM2220D) Module 6. Part A. Sample Problems

Candace M. Lawrence
Xavier University of Louisiana, clawren2@xula.edu

Follow this and additional works at: https://digitalcommons.xula.edu/doc_cm
Part of the Organic Chemistry Commons

Recommended Citation

This Organic Chemistry II is brought to you for free and open access by the Department of Chemistry at XULA Digital Commons. It has been accepted for inclusion in Course Modules by an authorized administrator of XULA Digital Commons. For more information, please contact ksiddell@xula.edu.
1. (25 points) Predict the product or products of each reaction. If there is no reaction, write “no reaction.” If there is stereochemistry, show it with a wedge, dash or an asterisk (*).
2. Propose a mechanism for the following reactions. You must include all arrows and intermediates to receive full credit.

(5 points)

(9 points)

3. Provide the correct reagents and intermediate structure(s) to complete the reaction schemes.

(5.5 points)

(5.5 points)
4. Complete these reactions. There may be more than one important product, or it is possible that no reaction occurs. Stoichiometry is not given; if you need 2, you have 2, etc. (16 pts)

(a)
\[\text{HgSO}_4 \quad \text{H}_2\text{SO}_4, \text{H}_2\text{O} \]

(b)
\[\text{HOCH}_2\text{CH}_3 \quad \text{H}_2\text{O}^+ \]

(c)
\[\text{H}_2\text{CrO}_4 \]

(d)
\[\text{H}_2\text{N-NH}_2 \quad \text{KOH}/\text{H}_2\text{O} \quad \text{heat} \]

5. Propose mechanisms for these reactions. Be sure to show all intermediates and mechanistic arrows. You can work backwards if that’s easier for you. (10 pts)

(a)
\[\text{O} + \text{NH}_3 \xrightleftharpoons{\text{dil H}^+} \text{NH} + \text{H}_2\text{O} \]

(b)
\[\text{HO}^\ominus \xrightleftharpoons{\text{HO}^-} \text{+ H}_2\text{O} \]
6. Give the IUPAC names of these compounds (6 pts):

\[
\begin{align*}
\text{[Image of compound]} & \quad \text{[Image of compound]}
\end{align*}
\]

7. Propose syntheses of these compounds. (12 pts)

(a)

\[
\begin{align*}
\text{[Image of compound]} & \quad \text{from} & \quad \text{[Image of compound]}
\end{align*}
\]

(b)

\[
\begin{align*}
\text{[Image of compound]} & \quad \text{from} & \quad \text{[Image of compound]}
\end{align*}
\]

8. Draw the structure consistent with these data: IR band at 1750 cm\(^{-1}\); 5 signals in \(^{13}\)C NMR (1 signal is above 200 ppm; 4 signals are below 100 ppm); \(^1\)H NMR: 2.2 ppm, t, 2H; 2.1 ppm, s, 3H; 1.3 ppm, m, 2H; 0.9 ppm, t, 3H. Also, give the IUPAC name of the compound. (6 pts)

Name:
9. Name the following compounds (3 points each):

![Chemical structures](image)

10. Draw structures of the following compounds (3 points each):

 a) 3,3- dichloropentanal
 b) 3-cyclohexenone

11. Give the structure of the major organic product or products expected from the following reactions. “No reaction” might be an appropriate answer in some cases. Show the stereochemistry of the products if applicable. (5 points each)

 a) [Chemical structure]
 b) [Chemical structure]
 c) [Chemical structure]
 d) [Chemical structure]
12. Give a short, efficient synthesis of the target compound from the indicated starting material and any other needed reagents (6 points each).

a) \[\text{CH}_3\text{S} - \text{SCH}_3 \quad \text{from} \quad \text{O} \]

b) \[\quad \text{from} \quad \text{OCH(}\text{CH}_3\text{)}_2 \]

13. Write a stepwise curved-arrow mechanism for the following reaction 6 points.

\[\text{O} + \text{CH}_3\text{OH} \xrightarrow{\text{NaOCH}_3} \text{HO} - \text{OCH}_3 \]
14. Provide the IUPAC name for this compound (8 points):

![Image of a compound with a double bond and a carbonyl group]

15. Draw the structures of these compounds (8 points):
(a) *m*-nitroacetophenone
(b) 3-isopropylcyclohexanone

![Images of m-nitroacetophenone and 3-isopropylcyclohexanone]

16. Write the reagents for the following conversions (9 pts)

![Image of a reaction scheme with ketone, amine, alcohol, and thioether structures]

17. Label the acetal and hemiacetal among the following compounds? (3 pts.)

![Images of compounds I, II, III, and IV with oxygen-containing functional groups]

I II III IV
18. Complete these reactions. Write “no reaction” if appropriate (12 pts).
(a)

(b)

(c)

(d)

19. Propose syntheses of these molecules (6 points):
(a)

20. Provide a structure for the compound with molecular formula C₅H₁₀O and with the following spectroscopic data. (4 pts.)
IR: 1720 cm⁻¹
¹H NMR: 0.9δ (triplet, I=3H), 1.7δ (sextet, I=2H), 2.1δ (singlet, I=3H), 2.4δ (triplet, I=2H)